The interrogation of various types of data is a routine strategy to explore the relationship between genotype and phenotype. An efficient approach for integrating and cross-comparing experimental multi-scale data in the context of whole-genome-based metabolic network reconstruction becomes a powerful tool that facilitates fundamental and applied research discoveries. The present study describes the reconstruction of a context-specific (CS) model for the methane-utilizing bacterium, Methylotuvimicrobium alcaliphilum 20ZR. M. alcaliphilum 20ZR is becoming an attractive microbial platform for the production of biofuels, chemicals, pharmaceuticals, and bio-sorbents for capturing atmospheric methane. We demonstrate that this pipeline can help reconstruct metabolic models that are similar to manually curated networks. Furthermore, the model is able to highlight previously overlooked pathways, thus advancing fundamental knowledge of non-model microbial systems or promoting their development toward biotechnological or environmental implementations.
Read full abstract