The primary research aim of this manuscript was to present a simplified absorber model and analyse the simulation results of the absorber model created to which, by design, only water was added and the outlet flue gas temperature was optimal. The obtained simulation results of the simplified absorber model were appropriately compared with the operational results of absorbers operating in professional WtE installations. This study focused on the simulation duration. The primary tool used in the paper is OpenFOAM (v2112). Two solvers were used for the calculations: ReactingParcelFoam and LTSReactingParcelFoam. They ran numerical tests on simplified absorber models. We evaluated the results according to the simulation time. We also examined the difference between the measured and calculated flue gas outlet temperatures. The results will guide further research on the absorber. They will speed up and improve the modelling of chemical processes. The only challenge was to define the chemical reactions and add a calcium molecule to the water droplet model. This work shows that we can simplify the absorber’s geometric model. It kept a low relative error and cuts the compute time. Using a local time step instead of a global one in numerical calculations significantly reduced their run time. It did this without increasing the relative error. The research can help develop complex three-phase flow models in the absorber in the future.
Read full abstract