The subject of study in the article is the acoustic resistance of local areas of the biological tissues in vivo, depending on their pathology. The aim of the work is to develop a quantitative method for measuring the acoustic resistance of local areas of the biological tissue (substance) located inside the human body. The following tasks are solved in the article: development of scientific foundations of the acousto-magnetic method for measuring the acoustic resistance of local areas of the biological tissue; development of a remote method for measuring electrical voltage on the surface of the patient's skin, caused by acousto-magnetic impact on local areas of the tissue and determined by the value of acoustic resistance; calculation of the ratios binding the value of the acoustic resistance of the local areas of the tissue with the electric voltage on the measuring probes on the patient's skin, the values of the acoustic radiation power and the external constant magnetic field, as well as with the distance between the probes and the local area of the biological tissue; verification of the calculated ratios using the experimental determination of the acoustic resistance of the local area of the model biological tissue. The following methods were used: physical modeling of the biological tissue, physical and mathematical modeling of electrical properties of the local part of the biological tissue, calculation of electromagnetic and acoustic parameters of the tissue, experimental measurement of electric field strength excited in the local part of the biological tissue, verification of calculated relations by comparing them with experimental results. The following results were obtained: the scientific foundations of the acousto-magnetic method for the quantitative measurement of the acoustic resistance of local areas of the biological tissue were developed; a remote method for measuring the electric voltage on the surface of the patient's skin caused by the acousto-magnetic effect on local areas of the tissue and the determined value of the acoustic impedance was developed; relations were calculated connecting the value of the acoustic impedance of local areas of the tissue with the electric voltage on the measuring probes on the patient's skin, the values of the acoustic radiation power and external constant magnetic field, as well as the distance between the probes and the local area of the biological tissue; verification of the calculated ratios was carried out using the experimental determination of the acoustic resistance of the local area of the model biological tissue. Conclusions: The scientific foundations of the remote acousto-magnetic method of high-precision measurement of the acoustic resistance of local areas of human biological tissue, confirmed experimentally on model tissue samples, have been developed. The method can make it possible to reveal with high accuracy the functional relations of the measured local value of acoustic resistance with pathological changes in the tissue. At the same time, the influence of the human factor on the interpretation of the recorded values of acoustic resistance (which is characteristic of the traditional, mainly qualitative, rather than quantitative ultrasound method) is excluded, the information content and reliability of acoustic diagnostics are increased.