Dynamically-coupled SWAN and ADCIRC models have been applied to enhance the predictions of extreme waves and storm surges induced by hurricanes and sea level rise (SLR) in the Gulf of Mexico. The model performance was evaluated using Hurricane Michael, a Category-5 hurricane, as a case study. Modeled wave heights were compared to the observations. Results indicate that the dynamically-coupled SWAN-ADCIRC models substantially enhance the modeling accuracy. By comparing to the maximum observed 2.69 m of wave height near the hurricane landing site, the error is 0.04 m by the SWAN-ADCIRC models in comparison to the 0.39 m by the SWAN stand-alone simulation. Effects of sea level rise on hurricane wave heights were investigated under four SLR scenarios of 0.2m, 0.5m, 1m, and 1.5m. Results indicate that, as sea level rises, wave heights increase non-linearly in shallow waters near the hurricane landing site. At the wave observation station near the hurricane landing site, the ratio of the wave-height change to SLR increases to 117% and the ratio of the combined wave-surge change to SLR increases to 265%. Analysis indicates that this is due to the substantial percentage changes in water depth occurring in shallow water compared to deep water caused by SLR.