Beach protection is vital to reduce the damage to shorelines and coastal areas; one of the artificial protections that can be utilized is the tetrapod. However, much damage occurred when using a traditional tetrapod due to the lack of stability coefficient (KD). Therefore, this research aims to increase the stability coefficient by providing minor modifications to the cape of the tetrapod, such as round-caped or cube-caped. The modification seeks to hold the drag force from the wave and offer a good interlocking in between the tetrapod. This research applied physical model test research using a breakwater model made from the proposed innovative tetrapod with numerous variations in dimensions and layers simulated with several scenarios. The analysis was carried out by graphing the relationship between the parameters of the measurement results and the relationship between dimensionless parameters, such as wave steepness H/gT2, and other essential parameters, such as the KD stability number and the level of damage in %. The result shows that the modified and innovative tetrapod has a more excellent KD value than the conventional tetrapod. In addition, the innovative tetrapod with the cube-shaped has a recommended KD value greater than the round shape. This means that for the modified tetrapod structure and the same level of security, the required weight of the tetrapod with the cube cap will be lighter than the tetrapod with the round cap. These findings have significant practical implications for coastal protection and engineering, potentially leading to more efficient and cost-effective solutions.
Read full abstract