The anthropogenic impact on the ozone layer is expressed in anomalies in the total ozone content (TOC) on a global scale, with periodic enhancements observed in high-latitude areas. In addition, there are significant variations in TOC time trends at different latitudes and seasons. The reliability of the TOC future trends projections using climate chemistry models must be constantly monitored and improved, exploiting comparisons against available measurements. In this study, the ability of the Earth’s system model SOCOLv4.0 to predict TOC is evaluated by using more than 40 years of satellite measurements and meteorological reanalysis data. In general, the model overpredicts TOC in the Northern Hemisphere (by up to 16 DU) and significantly underpredicts it in the South Pole region (by up to 28 DU). The worst agreement was found in both polar regions, while the best was in the tropics (the mean difference constitutes 4.2 DU). The correlation between monthly means is in the range of 0.75–0.92. The SOCOLv4 model significantly overestimates air temperature above 1 hPa relative to MERRA2 and ERA5 reanalysis (by 10–20 K), particularly during polar nights, which may be one of the reasons for the inaccuracies in the simulation of polar ozone anomalies by the model. It is proposed that the SOCOLv4 model can be used for future projections of TOC under the changing scenarios of human activities.
Read full abstract