Hydrogen sulfide (H2S) is the third gasotransmitter and is generated endogenously in hypoxic or inflammatory tissues and various cancers. We have recently demonstrated that endogenous H2S can be imaged with [99mTc]Tc-gluconate. In the present study, we detected H2S generated in hypoxic tissue, both in vitro and in vivo, using [99mTc]Tc-gluconate. In vitro uptake of [99mTc]Tc-gluconate was measured under hypoxic and normoxic conditions, using the colon carcinoma cell line CT26, and was higher in hypoxic cells than that in normoxic cells. An acute hindlimb ischemia-reperfusion model was established in BALB/c mice by exposing the animals to 3 h of ischemia and 3 h of reperfusion prior to in vivo imaging. [99mTc]Tc-gluconate (12.5 MBq) was intravenously injected through the tail vein, and uptake in the lower limb was analyzed by single-photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT images showed five times higher uptake in the ischemic limb than that in the normal limb. The standard uptake value (SUVmean) of the ischemic limb was 0.39 ± 0.03, while that of the normal limb was 0.07 ± 0.01. [99mTc]Tc-gluconate is a novel imaging agent that can be used both in vitro and in vivo for the detection of endogenous H2S generated in hypoxic tissue.
Read full abstract