Atmospheric wet deposition of base cations (BCs) plays a significant role in providing plant nutrients and buffering acidification. However, the temporal dynamic of wet BC deposition in China during the past two decades remain unclear. Here, we used long-term monitoring and literature data since 2000 to assess the temporal dynamics (seasonal and inter-annual variation), spatial patterns, main influencing factors, source apportionment, and capacity to neutralize the acidity of wet BC depositions at site, regional, and national scales. The results showed that total wet deposition of BCs was, on average, 2.12 keq ha−1 yr−1, where Ca2+ accounted for 65.57% of the total deposition, followed by Na+ (13.21%), Mg2+ (13.68%), and K+ (7.55%). Qinghai-Tibet had significantly lower BC deposition fluxes than northern, southern, and central China, as well as Inner Mongolia. Exchangeable BCs in soil, PM10 in the atmosphere, energy consumption, and cement production are significantly related to wet BC deposition, which account for 79.17% of the variation in the spatial deposition of BC. Influenced by the strategies to control acid rain and particulate matter in China, interannual variations showed a stabilization trend after a continuous decline from 2000 to 2017, which can be explained by inter-annual changes in PM10, energy consumption and cement production. Statistical methods confirmed that 45.95% of wet BC deposition was derived from crustal contributions, 27.78% from sea salt sources, and 26.27% from anthropogenic sources. Furthermore, we found that wet deposition of BCs neutralized 84.85% of the acidity due to NO3− and SO42− depositions. Under the emissions reduction strategy, there has been a decrease in the deposition of BC. However, SO42− and NO3− depositions decreased faster than BC deposition, which buffered a higher proportion of acidic depositions. Our findings contribute to an improved understanding of wet BC deposition in China, an evaluation of their capacity to neutralize acidity, and important parameters for acidification models.
Read full abstract