Shear behaviour of soil–structure interfaces greatly affects the performance of geotechnical structures. The soil–structure interfaces in geothermal structures (e.g., energy pile and energy wall) are often subjected to varying temperature and suction conditions. However, there is no constitutive model to simulate the coupled effects of suction and temperature on the shear behaviour of soil–structure interfaces. In this study, a thermo-mechanical model was newly developed based on the bounding surface plasticity framework to predict the thermo-mechanical behaviour of saturated and unsaturated interfaces. A power function was used to calculate the degree of saturation at the interface and improve the evaluation of suction effects on interface shear strength. A linear relationship between temperature and interface critical state friction angle was proposed to incorporate thermal effects. New equations were also proposed to describe the critical state lines (CSLs) in the void ratio versus stress plane ( e-[Formula: see text]) and to model the shearing-induced deformation at various temperatures and suctions. The experimental data from different interfaces in the literature were used to evaluate the model capability. Comparisons between measured and computed results suggest that this model can well capture the coupled effects of temperature, suction, and net normal stress on the shear behaviour of interfaces.
Read full abstract