Extractive adsorption is an integrated separation method employing a novel resin with both particle and liquid characteristics in terms of adsorption and extraction. In this study, the novel extractive adsorption polystyrene-divinylbenzene (PS-DVB) macroporous resin was synthesized by suspension polymerization, in which n-octanol (OL-PS-DVB) or mixed alcohols of n-octanol, undecyl alcohol, and tetradecyl alcohol (MA-PS-DVB) were added as porogen and enclosed in the resin skeleton after the reaction. The characterization of the two novel resins of OL-PS-DVB and MA-PS-DVB showed that they have large specific surface areas of 48.7 and 17.4 m2/g, respectively. Additionally, the two synthesized resins have much higher static adsorption capacities of 1,3-propanediol (511 and 473 mg/g) and dynamic adsorption capacities (312 and 267 mg/g) than traditional resins, because extractants enclosed in the resin can increase the adsorption capacity. Through Langmuir equation, the theoretical static maximum adsorption capacity of the mixed alcohols resin is 515 mg/g at 298 K and Gibbs free energy change of adsorption was -3781 J/mol, indicating that the adsorption process was spontaneous. In addition, the sorbent concentration effect in the resin was generated at high 1,3-propanediol (1,3-PDO) concentrations. The fitting of the Flocculation model can reveal that there is a possible relation between adsorption and flocculation. Compared to OL-PS-DVB, MA-PS-DVB showed better performance in the recovery yield of 1,3-PDO and other byproducts, the removal rates of the inorganic salt and protein, and the efficiency of recycled resin. For MA-PS-DVB, the recovery of 1,3-PDO, butyrate acid, acetic acid, and residual glycerol was 97.1%, 94.7%, 93.3%, and 90.3%, respectively. Simultaneously, the resin of MA-PS-DVB could remove 93.8% of inorganic salts and 90.9% of proteins in the concentrated fermentation broth. The two synthesized resins of OL-PS-DVB and MA-PS-DVB still had 90% or 92% of capacity for extractive adsorption of 1,3-propanediol after 10 times of recycling, which exhibited potential application in the separation of 1,3-propanediol from fermentation broth.