A series of innovative benzo[4,5]imidazo[1,2-b]pyrazole scaffold containing compounds were rationally designed through a ring-closure scaffold hopping strategy and synthetized with an intermediate derivatization approach. Physicochemical properties analysis indicated the potential pesticide-likeness of the target compounds. The optimal target compound A14 showed relatively good insecticidal activity against P. xylostella, with an LC50 value of 37.58 mg/L, and demonstrated lower acute fish toxicity compared to fipronil. Docking binding mode analysis demonstrated that compound A14 bound to GABAR through a H-bond between the amide group and the residue of 6'Thr. The differences in binding modes between benzo[4,5]imidazo[1,2-b]pyrazole target compounds and fipronil may be a key factor for the reduced insecticidal activities. The elucidated binding mode and SAR profile lay a foundation for the further structural optimization of insecticidal benzo[4,5]imidazo[1,2-b]pyrazole derivatives.