Numerous organisms in nature have demonstrated enhanced biocompatibility, precise tumor targeting capabilities, and efficient tissue traversal within the human body. Drawing inspiration from these organisms, researchers have employed bioengineering, bioconjugation, and micro- or nanotechnology to fabricate bioinspired micro- and nanostructured systems. These systems play a crucial role in addressing the limitations of conventional anticancer drugs and nanomaterials concerning biocompatibility, effective penetration of physiological barriers, as well as selective tumor targeting, thereby leading to improved therapeutic efficacy while minimizing nonspecific adverse effects on healthy cells. Consequently, extensive exploration of these bioinspired micro- and nanostructured systems has been undertaken across various cancer treatment modalities with some progressing into preclinical or clinical stages. However, our understanding of this field remains limited which may impede research progress, clinical translation efforts, and practical applications. Therefore, this study presents a systematic classification of bioinspired micro- and nanostructured systems for cancer therapy that comprehensively elucidates their sources of inspiration and design principles. Furthermore, it extensively discusses the current status of clinical translation efforts while identifying prevailing challenges and exploring future prospects. This work will establish a robust theoretical framework and serve as a valuable reference to facilitate advancements in research and clinical application within this field.
Read full abstract