Soil salinization adversely threatens plant survival and food production globally. The mobilization of storage reserves in cotyledons and establishment of the hypocotyl/root axis (HRA) structure and function are crucial to the growth of dicotyledonous plants during the post-germination growth period. Here, we report the adaptive mechanisms of wild and cultivated soybeans in response to alkali stress in soil during the post-germination growth period. Diferences in physiological parameters, microstructure, and the types, amounts and metabolic pathways of small molecule metabolites and gene expression were compared and multi-omics integration analysis was performed between wild and cultivated soybean under sufcient and artifcially simulated alkali stress during the post-germination growth period in this study. Structural analysis showed that the cell wall thickness of wild soybean under alkali stress increased, whereas cultivated soybeans were severely damaged. A comprehensive analysis of small molecule metabolites and gene expression revealed that protein breakdown in wild soybean cotyledons under alkali stress was enhanced, and transport of amino acids and sucrose increased. Additionally, lignin and cellulose synthesis in wild soybean HRA under alkali stress were enhanced. verall, protein decomposition and transport of amino acids and sucrose increased in wild soybean cotyledons under alkali stress, which in turn, promotes HRA growth. Similarly, lignin and cellulose synthesis in wild soybean HRA enhanced, which subsequently, enhanced cell wall synthesis, thereby maintaining the stability and functionality of HRA under alkali stress. This study presents important practical implications for the utilization of wild plant resources and sustainable development of agriculture.