In peri-urban areas, use of industrial wastewater for irrigation is a common practice. Industrial wastewater contains cadmium, chromium, lead, nickel, and other elements that deteriorate food quality and affect human health. Biochar has been proven to remediate heavy metal contaminated soil by reducing their mobility and bioavailability. A pot experiment was conducted to evaluate the efficiency of different levels of biochar on spinach growth with low heavy metal concentration and to minimize associated health issues. The experiment lasted two months and the treatments: Control (tap water), untreated and treated industrial wastewater and both in combination with biochar (0.5% and 1%) were applied in completely randomized design. Findings suggested that treated industrial wastewater with 1% biochar resulted in maximum plant height, shoot weight, chlorophyll contents (SPAD value), photosynthetic and transpiration rate. Biochar significantly reduced heavy metal mobility in soil due to its porous structure, high pH, higher CEC, and variety of surface functional groups. The cumulative hazard index (HI), hazard quotient, cancer risk, and total cancer risk (TCR) were calculated using method provided by US-EPA for each metal. All treatments had HI values of < 1, however applying 1% biochar significantly reduced the HI values to 2.00E-01 and 2.88E-01 in adults and children, respectively. TCR for all treatments was < 1, while treated industrial wastewater and biochar (1%) has significantly reduced to 1.55E-02 and 1.91E-03 for adults and children, respectively. Thus, it was determined that irrigation with industrial effluents caused toxicity in vegetables, which had a negative impact on human health. Biochar effectively mitigated metal toxicity in both soil and spinach plants that resulted in reduced health/cancer risk.