This study aims to evaluate the feasibility of using non-contact data collection methods—specifically, UAV (unmanned aerial vehicle)-based and terrestrial laser scanning technologies—to assess forest stand passability, which is crucial for military operations. The research was conducted in a mixed forest stand in the Březina military training area, where the position of trees and their DBHs (Diameter Breast Heights) were recorded. The study compared the effectiveness of different methods, including UAV RGB imaging, UAV-LiDAR, and handheld mobile laser scanning (HMLS), in detecting tree positions and estimating DBH. The results indicate that HMLS data provided the highest number of detected trees and the most accurate positioning relative to the reference measurements. UAV-LiDAR showed better tree detection compared to UAV RGB imaging, though both aerial methods struggled with canopy penetration in densely structured forests. The study also found significant variability in DBH estimation, especially in complex forest stands, highlighting the challenges of accurate tree detection in diverse environments. The findings suggest that while current non-contact methods show promise, further refinement and integration of data sources are necessary to improve their applicability for assessing forest passability in military or rescue contexts.