In our recent publications, we presented neutral-current ν–nucleus cross-sections for the coherent and incoherent channels for some stable Mo isotopes, assuming a Mo detector medium, within the context of the deformed shell model. In these predictions, however, we have not included the contributions in the cross-sections stemming from the stable 94,96Mo isotopes (abundance of 94Mo 9.12% and of 96Mo 16.50%). The purpose of the present work is to perform detailed calculations of ν–94,96Mo scattering cross-sections, for a given energy Eν of the incoming neutrino, for coherent and incoherent processes. In many situations, the Eν values range from 15 to 30 MeV, and in the present work, we used Eν = 15 MeV. Mo as a detector material has been employed by the MOON neutrino and double-beta decay experiments and also from the NEMO neutrinoless double-beta decay experiment. For our cross-section calculations, we utilize the Donnelly–Walecka multipole decomposition method in which the ν–nucleus cross-sections are given as a function of the excitation energy of the target nucleus. Because only the coherent cross-section is measured by current experiments, it is worth estimating what portion of the total cross-section represents the measured coherent rate. This requires the knowledge of the incoherent cross-section, which is also calculated in the present work.
Read full abstract