Tellurite glasses doped with Tm3+, Ho3+ and Ce3+ ions were prepared via melt-quenching to realise broadband and fluorescence enhancement in near-infrared (NIR) band. Under the pumping of a commercial 808 nm laser diode (LD), the emission bands at 2.0 μm, 1.85 μm, 1.47 μm, and 705 nm were observed in the Tm3+/Ho3+ co-doping glass samples, which originated from the transitions of Ho3+:5I7→5I8 and Tm3+:3F4→3H6, 3H4→3F4, 3F2,3 → 3H6, respectively. The existence of 2.0 μm band fluorescence is due to the energy transfer from the Tm3+:3F4 level to the Ho3+:5I7 level. This band overlaps with the 1.85 μm band which forms a broadband fluorescence spectrum in the range of 1600–2200 nm. In glass samples co-doped with Tm3+/Ho3+ with 0.085 mol% Ho2O3 and 1 mol% Tm2O3, the full width at half maximum (FWHM) of this broadband spectrum (1600–2200 nm) was as high as ∼370 nm. After introducing 0.6 mol% CeO2, the emission intensity of broadband fluorescence increased by ∼50%, which was caused by the cross-relaxations between Ce3+ and Tm3+ ions. The lifetime of fluorescence decay was determined to prove the interactions among the doped rare-earth ions, the radiative parameters such as transition probability, branching ratio and radiative lifetime were calculated from the absorption spectra based on the Judd-Ofelt theory to better understand the observed luminescence phenomena. In addition, X-ray diffraction (XRD) confirmed the amorphous state structure of the synthesised glass samples, while Raman spectrum revealed the different vibrational structural units forming the glass network.
Read full abstract