To evaluate the reproducibility and variability of biology-guided radiotherapy (BgRT) treatments using a large anthropomorphic phantom modeling the motion amplitude of a lung tumor. RefleXion X1 is equipped with two opposing 90 degrees PET detector arcs to capture the radionuclide emissions and direct the 6MV Linac to treat the lesions in real time. A custom-built phantom filled with a liquid [¹⁸F]Fluorodeoxyglucose (FDG) solution was used. Fillable target and OAR structures were 3D printed and attached to motion stages. The GTV = CTV was matched to the spherical 22 mm diameter target, and the PTV was a 5 mm expansion from the CTV volume. The Biology Tracking Zone (BTZ) was generated after adding 5 mm margin to the motion extent of the CTV. The OAR was a large C-shape annulus (emulating a heart) that was approximately 3 cm from the target. The 3D independent motion trajectory of the target was designed to mimic lung motion: range of +5.8 mm to -4.9 mm in LR, range of +14.4 mm to -11.3 mm in SI, and range of +5.2 mm to -5.1 mm in AP directions. The OAR motion waveform used a 1D sinusoidal pattern with a 5 mm amplitude in SI direction. The target and the OAR were filled with 40 kBq/mL while the background had 5 kBq/mL FDG. A BgRT Modeling (imaging-only) PET acquisition was performed using RefleXion X1 and used to generate a 4-fraction BgRT treatment plan prescribing 10 Gy/fraction to PTV. For each delivery, target, OAR and background were filled with the same FDG concentrations as in the BgRT Modeling PET planning scan. Dosimetry to the target and OAR were both measured using an ion-chamber (Exradin A14SL) and film in the coronal plane through the center of the GTV for all 4 fractions. The mean activity concentration within the (BTZ) was 7.4 ± 0.8 kBq/mL. The calculated signal-to-noise ratio metric (Normalized Target Signal) within the BTZ was 4.0 ± 0.3. Total treatment times were all less than 35 minutes (34.3 ± 0.2). Prescription dose coverage to the CTV for all 4 fractions was 100%. Ion chamber measurements in the CTV were -1.6 ± 1.3% relative to the planned dose over the active area of the ion-chamber. Minimum and maximum doses to the CTV, measured on film, were -7.7 ± 2.2% and 1.3 ± 1.4%, calculated relative to the planned dose distribution, respectively. The OAR maximum point dose measured on film was -8.7 ± 2.9%, calculated relative to the maximum OAR dose predicted on the bounded dose-volume histogram. Based on this initial study, accurate and reproducible dosimetry can be achieved for targets under respiratory motion using biology-guided radiotherapy over the course of a complete course of treatment. Further studies are needed to evaluate the intrafraction dosimetry of BgRT delivery under various motion models and tumor sizes.
Read full abstract