Alkane mixture phase equilibria is required for a range of industrial applications, most particularly for the petroleum industries. Mixtures containing light and heavy normal alkanes are of even further significance due to their non-ideal thermodynamic behavior. In this work, for the first time, the ternary system of C1 + C10 + C28 was investigated experimentally to obtain bubble point pressures at various concentrations and temperatures ranging from 373 up to 445 K. The synthetic method of phase equilibrium measurements was utilized, which is known to have high accuracy. The resulting bubble points for the mixtures ranged in pressure from about 3 MPa up to 6 MPa. The data indicated that methane concentrations had the greatest impact, not only on the magnitude of the bubble point pressure, but also on the slope of its temperature trend. The relative concentrations of n-decane and n-octacosane had far less impact on the bubble point curves. The results were also modelled using the Peng–Robinson equation of state, and it was found that this equation has the capability to predict the data with an AARD% of 5.1 %. When temperature-independent binary interaction parameters were optimized to the data, the AARD% reduced to 2.4 %. Although the components vary greatly in size, perhaps the success of the Peng–Robinson equation of state for this mixture could be attributed to the fact that it was developed for hydrocarbon mixtures, and so, a reason for its popularity in the petroleum industries, alongside its simplicity and ease of use.