Due to rising living standards, it is important to improve wheat's quality traits by adjusting its storage protein genes. The introduction or locus deletion of high molecular weight subunits could provide new options for improving wheat quality and food safety. In this study, digenic and trigenic wheat lines were identified, in which the 1Dx5+1Dy10 subunit, and NGli-D2 and Sec-1s genes were successfully polymerized to determine the role of gene pyramiding in wheat quality. In addition, the effects of ω-rye alkaloids during 1BL/1RS translocation on quality were eliminated by introducing and utilizing 1Dx5+1Dy10 subunits through gene pyramiding. Additionally, the content of alcohol-soluble proteins was reduced, the Glu/Gli ratio was increased and high-quality wheat lines were obtained. The sedimentation values and mixograph parameters of the gene pyramids under different genetic backgrounds were significantly increased. Among all the pyramids, the trigenic lines in Zhengmai 7698, which was the genetic background, had the highest sedimentation value. The mixograph parameters of the midline peak time (MPT), midline peak value (MPV), midline peak width (MPW), curve tail value (CTV), curve tail width (CTW), midline value at 8 min (MTxV), midline width at 8 min (MTxW) and midline integral at 8 min (MTxI) of the gene pyramids were markedly enhanced, especially in the trigenic lines. Therefore, the pyramiding processes of the 1Dx5+1Dy10, Sec-1S and NGli-D2 genes improved dough elasticity. The overall protein composition of the modified gene pyramids was better than that of the wild type. The Glu/Gli ratios of the type I digenic line and trigenic lines containing the NGli-D2 locus were higher than that of the type II digenic line without the NGli-D2 locus. The trigenic lines with Hengguan 35 as the genetic background had the highest Glu/Gli ratio among the specimens. The unextractable polymeric protein (UPP%) and Glu/Gli ratios of the type II digenic line and trigenic lines were significantly higher than those of the wild type. The UPP% of the type II digenic line was higher than that of the trigenic lines, while the Glu/Gli ratio was slightly lower than that of the trigenic lines. In addition, the celiac disease (CD) epitopes' level of the gene pyramids significantly decreased. The strategy and information reported in this study could be very useful for improving wheat processing quality and reducing wheat CD epitopes.
Read full abstract