Molybdenum trioxide (α-MoO3) is a promising and inexpensive alternative to platinum group metals (PGMs), for electrocatalytic hydrogen evolution reaction (HER). However, to make it a viable candidate for electrocatalytic systems, we must address the hurdles associated with its inferior electrical conductivity and lack of active sites. Unlike Mo-based compounds such as MoS2 and MoSe2, which possess catalytically active edges, α-MoO3 lacks inherent active sites for HER. Previous studies have employed various strategies to activate MoO3 for HER, yet its activation in near-neutral conditions remain largely unexplored. In this study, a previously known α-MoO3 intercalating {Ni(H2O)6}2+, [MoVI2O6(CH3COO){NiII(H2O)6}0.5]·H2O (Ni(H2O)6@MoO3) is prepared via a simple and scalable room-temperature aqueous synthesis. In the subsequent aerial thermal annealing process at 300, 400 and 500 °C, Ni(H2O)6@MoO3 acts as a self-sacrificial template, yielding mixed metal oxide composites of nickel and molybdenum (named as MoO3-300, MoO3-400 and MoO3-500). The HR-TEM and XPS analyses confirm the formation of the Ni2O3 phase alongside the orthorhombic α-MoO3. The annealing temperature plays a key role in the crystallinity, phase, morphology, and electrocatalytic performance of the resulting composites. The composite formed at 400 °C (MoO3-400) shows the best electrocatalytic performance among them.
Read full abstract