We propose an interior penalty method to solve a nonlinear obstacle problem arising from the discretization of an infinite-dimensional optimization problem. An interior penalty equation is proposed to approximate the mixed nonlinear complementarity problem representing the Karush-Kuhn-Tucker conditions of the obstacle problem. We prove that the penalty equation is uniquely solvable and present a convergence analysis for the solution of the penalty equation when the problem is strictly convex. We also propose a Newton’s algorithm for solving the penalty equation. Numerical experiments are performed to demonstrate the convergence and usefulness of the method when it is used for the two non-trivial test problems.
Read full abstract