Xanthine oxidase (XO), which plays a key role in purine metabolism, is an important target enzyme for the prevention and treatment of hyperuricemia. Inhibitory activity against XO is a common criterion for the screening of compounds with potential anti-hyperuricemic activity. In this study, 22 XO inhibitors were used to construct a 3D-QSAR pharmacophore model. Subsequently, molecular docking and in vitro activity evaluations were used to identify strong XO inhibitors from a list of 2000 natural compounds. The interaction mechanisms of these compounds with XO were analyzed based on inhibition kinetics and multi-spectral analyses. The pharmacophore model was composed of three hydrogen bond receptors and a hydrophobic center. The screened compounds — Diosmetin, Fisetin, and Genistein — all showed good XO inhibitory activity, with IC50 values of 1.86 ± 0.11 μM, 5.83 ± 0.08 μM, and 7.56 ± 0.10 μM, respectively. Kinetic analysis, fluorescence quenching assays, and molecular docking experiments showed that Diosmetin, Fisetin, and Genistein docked near the same active site of XO, mainly affecting the microenvironment of tryptophan residues. These molecules showed static binding to XO via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Diosmetin and Genistein were competitive inhibitors, whereas Fisetin was a mixed inhibitor. Infrared spectroscopy showed that Diosmetin, Fisetin, and Genistein increased the α-helix content of XO from 7.4 % to 16.6 %, 21.4 %, and 11.2 %, respectively, thereby enhancing its stability. In summary, the pharmacophore model constructed in this study was accurate. The flavonoids Diosmetin, Fisetin, and Genistein effectively inhibited the activity of XO, and the amino acid residues LEU257, ILE353, and VAL259 played a key role in the interaction between the flavonoids and XO. These findings are of great significance for the screening and development of new XO inhibitors.
Read full abstract