The Hardy-Littlewood maximal operator M satisfies the classical Sawyer-type estimate MfvL1,∞(uv)≤Cu,v‖f‖L1(u),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\left\\| \\frac{Mf}{v}\\right\\| _{L^{1,\\infty }(uv)} \\le C_{u,v} \\Vert f \\Vert _{L^{1}(u)}, \\end{aligned}$$\\end{document}where uin A_1 and uvin A_{infty }. We prove a novel extension of this result to the general restricted weak type case. That is, for p>1, uin A_p^{{mathcal {R}}}, and uv^p in A_infty , MfvLp,∞(uvp)≤Cu,v‖f‖Lp,1(u).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\left\\| \\frac{Mf}{v}\\right\\| _{L^{p,\\infty }(uv^p)} \\le C_{u,v} \\Vert f \\Vert _{L^{p,1}(u)}. \\end{aligned}$$\\end{document}From these estimates, we deduce new weighted restricted weak type bounds and Sawyer-type inequalities for the m-fold product of Hardy-Littlewood maximal operators. We also present an innovative technique that allows us to transfer such estimates to a large class of multi-variable operators, including m-linear Calderón-Zygmund operators, avoiding the A_infty extrapolation theorem and producing many estimates that have not appeared in the literature before. In particular, we obtain a new characterization of A_p^{{mathcal {R}}}. Furthermore, we introduce the class of weights that characterizes the restricted weak type bounds for the multi(sub)linear maximal operator {mathcal {M}}, denoted by A_{mathbf {P}}^{{mathcal {R}}}, establish analogous bounds for sparse operators and m-linear Calderón-Zygmund operators, and study the corresponding multi-variable Sawyer-type inequalities for such operators and weights. Our results combine mixed restricted weak type norm inequalities, A_p^{{mathcal {R}}} and A_{mathbf {P}}^{{mathcal {R}}} weights, and Lorentz spaces.