Lignocellulosic feedstocks are widely studied for sustainable liquid fuel and chemical production. The pulp and paper industry generates large amounts of kraft black liquor (BL) from which a high volume of hydroxy acids (HAs) can be separated for further catalytic processing. Here, we explore the catalytic upgrading of HAs, including the conversion of (1) a model HA, gluconic acid; (2) a model mixture of HAs, and (3) a real mixture of HAs derived from kraft BL on M/Nb2O5 (M = Pd, Pt, Rh, and Ru). The hydrodeoxygenation of model gluconic acid reveals that "volatile" carboxylic acids (mainly C2 and C3), levulinic acid, and cyclic esters are significant products over all the catalysts, with Pd/Nb2O5 showing superior activity and selectivity toward valuable intermediates. The model mixture of HAs shows a wide range of reactivity over the supported metal catalyst, with the product selectivity strongly correlating to reaction temperature. Utilizing a 0.25% Pd/Nb2O5 catalyst, a real mixture of HAs derived from kraft BL is successfully dehydroxylated to produce a mixture rich in C3-C8 carboxylic acids that may be amenable for further upgrading, e.g., catalytically to ketones with high carbon chain lengths. Despite the feedstock complexity, we selectively cleaved the C-OH bonds of HAs, while successfully preserving most of the -COOH groups and minimizing C-C and C=O bond scission reactions under the operating conditions tested. The BL-derived HA stream is thus proposed to be a suitable platform for producing mixed carboxylic acid products from an overoxygenated byproduct feed.