Embryo survival and pre-implantation development depend on uterine luminal fluid, which is believed to play a role in early embryonic death and infertility in cows. Extracellular vesicles (EVs) in the uterine luminal fluid contain microRNAs (miRNAs), crucial mediators of intercellular communication. miRNAs regulate conceptus-maternal interactions and participate in embryonic development by suppressing gene expression. Therefore, we hypothesized that miRNAs in the intrauterine EVs of low-fertility cows would hinder embryonic survival and development. EVs were collected from the bovine uterine luminal fluid of both normal- and low-fertility cows 7 days post-estrus. Small RNA-sequencing analysis of miRNAs isolated from these EVs identified eight miRNAs that were highly expressed in normal-fertility cows (normal-fertility miRNAs) and eight with elevated expression in low-fertility cows (low-fertility miRNAs). These two sets of miRNAs were transfected into hatched blastocysts via lipofection. RNA-seq following lipofection with low-fertility miRNAs identified 424 differentially expressed genes (DEGs) relative to the control; in contrast, following lipofection with normal-fertility miRNAs, seven DEGs were identified. Pathway analysis of the DEGs identified following lipofection with low-fertility miRNAs revealed substantial enrichment of mitogen-activated protein kinase (MAPK) signaling. Expression of activator protein 1 (AP1) and interferon-tau (IFNT) mRNA was significantly lower in the low-fertility miRNA transfection group than in the control. IFNT is essential for maternal pregnancy recognition. Therefore, miRNAs in intrauterine EVs from low-fertility cows at 7 days post-estrus may inhibit embryo development and suppress IFNT expression by altering MAPK signaling.