The quality of verbal communication, understood as the absence of uncertainty in the message transmitted, is a key factor in mission-critical processes. Several processes are handled by direct voice communication between these endpoints and any miscommunication could have an impact in success of the task. For that reason, the quality control of verbal communication is required to ensure that the instructions issued are effectively understood and adequately executed. In this context, it is expected that instructions from the command center are issued once, and that the acknowledgment from the field are minimal. In the present work, the communication between an electrical company control center and factory workers in the field was chosen for analysis. We developed two complementary approaches by using machine learning and deep learning algorithms to assess, in an automatic way, the quality of information transmission in the voice communications. Preliminary results demonstrate that the automatic uncertainty detection is feasible, despite the small number of samples available at the present time. To support further studies, a repository was created in GitHub with the spectrogram and the tokenized words of all audios.