Thermoplastic starch (TPS) is in situ ring-opening polymerized with L-lactide (L-LA) and directly condensed with a poly(butylene succinate) (PBS) prepolymer in an extruder using two different production pathways to demonstrate the concept “like dissolves like” in a miscible poly(lactide)/TPS/PBS (PLA/TPS/PBS) ternary blend. The TPS crystalline pattern changes from a VH-type to an EH-type after TPS modification with a hydrophobic-PLLA segment. Heteronuclear multiple-bond correlation confirmed the successful formation of PLLA-TPS-PBS copolymers via two different in situ chemical modification pathways (i.e., (I) step-by-step modification and (II) one-pot reaction). All obtained PLLA-TPS-PBS copolymers functioned as the miscible phase, enhancing PLA/PLLA-TPS-PBS/PBS ternary blend miscibility, especially the random structural PLLA-TPS-PBS-II copolymers created in an in situ one-pot reaction. However, the PLLA-TPS-PBS-I copolymers can enhance PBS crystallization only. While the random PLLA-TPS-PBS-II copolymers exhibit a homogeneous multi-phase dispersion and crystallization acceleration in both the PLA and PBS chains. Moreover, the storage modulus level of the PLA/PLLA-TPS-PBS-II/PBS ternary blend remains high with a downward temperature shift in the glass transition region, indicating a stronger and more flexible system. The practical achievement of in situ modified TPS and, consequently, a miscible PLA/PLLA-TPS-PBS/PBS ternary blend with favorable physical properties, reveal its potential application in both compostable and food contact packaging.
Read full abstract