We present a temperature-transferable coarse-grained (CG) model for poly(lactic acid) (PLA), specifically designed to replicate its volumetric properties and solubility parameter in the molten state. The CG-bonded potentials were derived by using the iterative Boltzmann inversion (IBI) optimization method to match structural properties from detailed atomistic models. A parametrization workflow was employed to determine nonbonded interaction parameters with temperature-dependent corrections that provide agreement with the target properties across the melting temperature range. The CG model successfully replicates key features of the PLA melt. It satisfactory reproduces the density and solubility parameter, maintains the dependence of chain conformation on molecular weight, and captures the dynamic behavior through agreement in scaled mean squared displacement and diffusion coefficients with the atomistic model. Additionally, the CG model offers much faster equilibration compared with the atomistic model. The proposed model is expected to be particularly useful for investigating the miscibility characteristics of PLA in various blends and composites that remain challenging to explore using fully atomistic simulations or experiments.
Read full abstract