Background Diabetic retinopathy (DR) is the most important manifestation of diabetic microangiopathy. It is essential to explore the gene regulatory relationship and genomic variation disturbance of biological networks in DR progression. Methods In this study, we constructed a comprehensive lncRNA-mRNA ceRNA network of DR procession (CLMN) and explored its topological characteristics. Results Modular and functional analysis indicated that the organization of CLMN performed fundamental and specific functions in diabetes and DR pathology. The differential expression of hub ceRNA nodes and positive correlation reveals the highly connected ceRNA regulation and important roles in the regulating of DR pathology. A large proportion of SNPs in the TFBS, DHS, and enhancer regions of lncRNAs will affect lncRNA transcription and further cause expression variation. Some SNPs were found to disrupt the lncRNA functional elements such as miRNA target binding sites. These results indicate the complex nature of genotypic effects in the disturbing of CLMN and further contribute to gene expression variation and different disease phenotypes. Conclusion The identification of individual genomic variations and analysis of biological network disturbance by these genomic variations will help provide more personalized treatment plans and promote the development of precision medicine for DR.
Read full abstract