Hemorrhagic shock (HS) is accompanied by a pronounced activation of the inflammatory response in which acute lung injury (ALI) is one of the most frequent consequences. Among the pivotal orchestrators of this inflammatory cascade, extracellular cold-inducible RNA-binding protein (eCIRP) emerges as a noteworthy focal point, rendering it as a promising target for the management of inflammation and tissue injury. Recently, we have reported that oligonucleotide poly(A) mRNA mimic termed A 12 selectively binds to the RNA binding region of eCIRP and inhibits eCIRP binding to its receptor TLR4. Furthermore, in vivo administration of eCIRP induces lung injury in healthy mice and that mouse deficient in CIRP showed protection from inflammation-associated lung injury. We hypothesize that A 12 inhibits systemic inflammation and ALI in HS. To test the impacts of A 12 on systemic and lung inflammation, extent of inflammatory cellular infiltration and resultant lung damage were evaluated in a mouse model of HS. Male mice were subjected to controlled hemorrhage with a mean arterial pressure of 30 mm Hg for 90 min and then resuscitated with Ringer's lactate solution containing phosphate-buffered saline (vehicle) or A 12 at a dose of 4 nmol/g body weight (treatment). The infusion volume was twice that of the shed blood. At 4 h after resuscitation, mice were euthanized, and blood and lung tissues were harvested. Blood and tissue markers of inflammation and injury were evaluated. Serum markers of injury (lactate dehydrogenase, alanine transaminase, and blood urea nitrogen) and inflammation (TNF-α, IL-6) were increased after HS and A 12 treatment significantly decreased their levels. A 12 treatment also decreased lung levels of TNF-α, MIP-2, and KC mRNA expressions. Lung histological injury score, neutrophil infiltration (Ly6G staining and myeloperoxidase activity), and lung apoptosis were significantly attenuated after A 12 treatment. Our study suggests that the capacity of A 12 in attenuating HS-induced ALI and may provide novel perspectives in developing efficacious pharmaceutics for improving hemorrhage prognosis.