High-spin polarized magnetic materials might be useful in spintronics applications. The spin-polarized magnetic, optical, electronic and structural attributes of half-Heusler VXPt (X = Br, Se) alloys were theoretically explored and calculated using the WIEN2k code. The ground states of the structures are optimized, and the bulk moduli and lattice constants are computed. The values obtained from the formation energies show their stability. For VBrPt, an energy gap is present in major and minority spin carriers, while for VSePt, major spin carriers exhibit an energy gap and metallic character is seen in minority spin carriers. The band structures are further illustrated deeply through the investigation of density of states. The electron density graphs depict the ionic bonding in both alloys. The magnetic moments are additionally assessed, and the recorded values support the magnetic characteristics of VBrPt and VSePt. The assessment of how the studied alloys react to light is determined by computing various parameters. The imaginary component and absorption coefficient anticipate substantial light absorption within the visible region. The calculated outcomes unveiled the potential of the examined alloys for applications in spintronics.
Read full abstract