Conventional partially removable skeletal dentures are one of the most common therapeutic solutions offered to edentulous patients worldwide. The present study aims to compare the skeleton of removable dentures realized via classical techniques to that realized via modern techniques, represented by the laser sintering technique, with the comparative aspects being realized through the evaluation of atomic force microscopy (AFM). A total of 20 metal frameworks made of Co-Cr were sectioned, representing the infrastructure of partially removable skeletal dentures, developed using the classical technique versus the laser sintering technique. The infrastructures of partially removable skeletal dentures were designed for both the maxilla and the mandible, with the design of each type of denture being identical, and were developed using both techniques. The roughness values are different depending on the technological method used; for the conventional casting technique, we have higher roughness for the component elements of the partially removable skeletal denture that have more stretch, e.g., the major connector, and for the 3D laser sintering technique, lower roughness is obtained for the component elements that have a lower stretch, e.g., the clasp arms, the minor connector, or the junction between the saddles and the major connector. The clinical implications of the presence of roughness at the level of the active arms or at the level of the connector saddle junction are represented by the risk of fracture, which confers real discomfort to the patient.
Read full abstract