AbstractCoxsackievirus B3 (CVB3) is a member of the enterovirus genus and linked to several diseases, including myocarditis, which can progress to dilated cardiomyopathy. Despite ongoing preclinical efforts, no clinically approved vaccines against CVB3 are currently available, highlighting the urgent need for effective prophylactic solutions. In this study, a nanovaccine platform based on spider minor ampullate silk protein (MiSp) is introduced. This platform utilizes protein nanoparticles engineered from chimeric proteins that incorporate CVB3 antigenic peptides into customized MiSp, subsequently loaded with all‐trans retinoic acid (RA). These functional nanovaccines are capable of eliciting both mucosal and systemic immune responses following subcutaneous administration and demonstrate significant protective effects against CVB3 infection in mice. This study signifies an approach in peptide‐based parenteral vaccine strategies, utilizing engineered MiSp nanoparticles combined with RA. This methodology represents a promising pathway for preventing enterovirus infections by leveraging the unique immunomodulatory properties of spidroins and RA to combat these pathogens effectively.