Birds of prey have suffered persecution for centuries through trapping, shooting, poisoning and theft from the wild to meet the demand from egg collectors and falconers; they were also amongst the earliest beneficiaries of DNA testing in wildlife forensics. Here we report the identification and characterisation of 14 novel tetramer, pentamer and hexamer short tandem repeat (STR) markers which can be typed either by capillary electrophoresis or massively parallel sequencing (MPS) and apply them to historical casework samples involving 49 peregrine falcons, 30 of which were claimed to be the captively bred offspring of nine pairs. The birds were initially tested in 1994 with a multilocus DNA fingerprinting probe, a sex test and eight single-locus minisatellite probes (SLPs) demonstrating that 23 birds were unrelated to the claimed parents. The multilocus and SLP approaches were highly discriminating but extremely time consuming and required microgram quantities of high molecular weight DNA and the use of radioisotopes. The STR markers displayed between 2 and 21 alleles per locus (mean = 7.6), lengths between 140 and 360 bp, and heterozygosities from 0.4 to 0.93. They produced wholly concordant conclusions with similar discrimination power but in a fraction of the time using a hundred-fold less DNA and with standard forensic equipment. Furthermore, eleven of these STRs were amplified in a single reaction and typed using MPS on the Illumina MiSeq platform revealing eight additional alleles (three with variant repeat structures and five solely due to flanking SNPs) across four loci. This approach gave a random match probability of < 1E-9, and a parental pair false inclusion probability of < 1E-5, with a further ten-fold reduction in the amount of DNA required (~3 ng) and the potential to analyse mixed samples. These STRs will be of value in monitoring wild populations of these key indicator species as well as for testing captive breeding claims and establishing a database of captive raptors. They have the potential to resolve complex cases involving trace, mixed and degraded samples from raptor persecution casework representing a significant advance over the previously applied methods.
Read full abstract