Ammonium sulfate, as the primary leaching agent, has caused significant nitrogen pollution in rare earth elements (REEs) mining areas. Phytoremediation is a promising remediation method, relying on the synergistic relationships between plants and their root-associated microbiome. Nevertheless, harnessing the microbiome to accelerate nitrogen transformation and absorption by plants is challenging. Here, we investigated the composition, activities and culturable fraction of the root bacterial microbiome of the pioneer plant Miscanthus floridulus grown in a REEs tailing soil containing a high ammonia nitrogen (AN) concentration at 344.35 mg kg−1. Based on this, we constructed a simplified synthetic microbial community (SynCom) derived from the roots of M. floridulus, possessing nitrification and denitrification capabilities, to help REEs mine plants efficiently convert pollutant AN into nutrients, thereby enhancing plant growth and AN removal. This SynCom, consisting of 10 bacterial strains, included species of the genera Burkholderia (5) Paraburkholderia (1), Curtobacterium (1), Leifsonia (1) and Sinomonas (2). As a result, this SynCom alone achieved a significant reduction of 24.8% in AN content in tailing soil. When the SynCom inoculated with plants, the reduction in AN was even more significant (32.6%), surpassing the reduction achieved solely by plants (25.5%). Moreover, live SynCom inoculation significantly increased shoot and root biomass by 39.8% and 49.7%, respectively, compared to dead SynCom inoculation. These results indicate that the reduction in AN can be attributed to the SynCom's nitrification and denitrification capabilities, as well as its ability to enhance plant nitrogen absorption by stimulating their growth. Notably, seven nitrifying and denitrifying strains of the SynCom are particularly enriched, suggesting that plant roots selectively recruit nitrogen cycle-related bacteria to accelerate nitrogen transformation and absorption. These results provide a practical solution for harnessing the synergistic relationships between plants and their root microbiome in environmental remediation efforts.