Under the interference of climate warming and human engineering activities, the degradation of permafrost causes the frequent occurrence of geological disasters such as uneven foundation settlement and landslides, which brings great challenges to the construction and operational safety of road projects. In this paper, the spatial and temporal evolution of surface deformations along the Beihei Highway was investigated by combining the SBAS-InSAR technique and the surface frost number model after considering the vegetation factor with multi-source remote sensing observation data. After comprehensively considering factors such as climate change, permafrost degradation, anthropogenic disturbance, and vegetation disturbance, the surface uneven settlement and landslide processes were analyzed in conjunction with site surveys and ground data. The results show that the average deformation rate is approximately −16 mm/a over the 22 km section of the study area. The rate of surface deformation on the pavement is related to topography, and the rate of surface subsidence on the pavement is more pronounced in areas with high topographic relief and a sunny aspect. Permafrost along the roads in the study area showed an insignificant degradation trend, and at landslides with large surface deformation, permafrost showed a significant degradation trend. Meteorological monitoring data indicate that the annual minimum mean temperature in the study area is increasing rapidly at a rate of 1.266 °C/10a during the last 40 years. The occurrence of landslides is associated with precipitation and freeze–thaw cycles. There are interactions between permafrost degradation, landslides, and vegetation degradation, and permafrost and vegetation are important influences on uneven surface settlement. Focusing on the spatial and temporal evolution process of surface deformation in the permafrost zone can help to deeply understand the mechanism of climate change impact on road hazards in the permafrost zone.
Read full abstract