In this work, we implemented line-of-sight (LoS) ray tracing functionality to investigate problems in millimetre-wave propagation modelling and network planning in 3D city model environments. First, we validated an existing LoS propagation probability model expressed as an exponential rule with the link distance. By fitting ray tracing simulation results under different scenarios to the model, the relationships between key parameters in the model and factors including the building density and the transmitter height were qualitatively analysed. Next, we developed a network planning framework for a multi-hop outdoor urban network by formulating a mixed-integer linear programming problem which minimises the overall deployment cost through optimal site selection. Taking the sets of potential site locations and potential links as inputs, we selected a subset of the sites that comprise a tree-structured network that satisfies all the user demands at a minimum deployment cost. We also analysed the time required for solving this optimisation problem in order to provide a prediction of the execution time for larger-sized problems.