Over the past 15 years, much scientific work has been published on the potential human impacts on climates. For their Third Assessment Report in 2001, the United Nations International Programme on Climate Change developed a set of economic development scenarios, which were then run with the four major general circulation models (GCM) to estimate the anthropogenesis-forced climate change. These GCMs produce worldwide grids of predicted monthly temperature, cloud, and precipitation deviations from the period 1961–1990. As this period is the same used for several major typical meteorological year data sets, these typical data sets can be used as a starting point for modifying weather files to represent predicted climate change. Over the past 50 years, studies of urban heat islands (UHI) or urbanization have provided detailed measurements of the diurnal and seasonal patterns and differences between urban and rural climatic conditions. While heat islands have been shown to be a function of both population and microclimatic and site conditions, they can be generalized into a predictable diurnal and seasonal pattern. Although the scientific literature is full of studies looking at the impact of climate change driven by human activity, there is very little research on the impact of climate change or urban heat islands on building operation and performance across the world. This article presents the methodology used to create weather files which represent climate change scenarios in 2100 and heat island impacts today. For this study, typical and extreme meteorological weather data were created for 25 locations (20 climate regions) to represent a range of predicted climate change and heat island scenarios for building simulation. Then prototypical small office buildings were created to represent typical, good, and low-energy practices around the world. The simulation results for these prototype buildings provide a snapshot view of the potential impacts of the set of climate scenarios on building performance. This includes location-specific building response, such as fuel swapping as heating and cooling ratios change, impacts on environmental emissions, impacts on equipment use and longevity comfort issues, and how low-energy building design incorporating renewables can significantly mitigate any potential climate variation. In this article, examples of how heat island and climate change scenarios affect diurnal patterns are presented as well as the annual energy performance impacts for three of the 25 locations. In cold climates, the net change to annual energy use due to climate change will be positive – reducing energy use on the order of 10% or more. For tropical climates, buildings will see an increase in overall energy use due to climate change, with some months increasing by more than 20% from current conditions. Temperate, mid-latitude climates will see the largest change but it will be a swapping from heating to cooling, including a significant reduction of 25% or more in heating energy and up to 15% increase in cooling energy. Buildings which are built to current standards such as ASHRAE/IESNA Standard 90.1-2004 will still see significant increases in energy demand over the twenty-first century. Low-energy buildings designed to minimize energy use will be the least affected, with impacts in the range of 5–10%. Unless the way buildings are designed, built, and operated changes significantly over the next decades, buildings will see substantial operating cost increases and possible disruptions in an already strained energy supply system.
Read full abstract