We prove a rigidity property for mapping tori associated to minimal topological dynamical systems using tools from noncommutative geometry. More precisely, we show that under mild geometric assumptions, a leafwise homotopy equivalence of two mapping tori associated to Zd-actions on a compact space can be lifted to an isomorphism of their foliation C⁎-algebras. This property is a noncommutative analogue of topological rigidity in the context of foliated spaces whose space of leaves is singular, where isomorphism type of the C⁎-algebra replaces homeomorphism type. Our technique is to develop a geometric approach to the Elliott invariant that relies on topological and index-theoretic data from the mapping torus. We also discuss how our construction can be extended to slightly more general homotopy quotients arising from actions of discrete cocompact subgroups of simply connected solvable Lie groups, as well as how the theory can be applied to the magnetic gap-labelling problem for certain Cantor minimal systems.
Read full abstract