The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulating the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quantum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify a large number of local conserved charges in the model. We then reveal a mapping between the minimal quantum breakdown model in certain charge sectors and a quantum link model which simulates the U(1) lattice gauge theory and show that the local conserved charges map to the gauge symmetry generators. A special charge sector of the model further maps to the PXP model, which shows quantum many-body scars. This mapping unveils the rich dynamics in different Krylov subspaces characterized by different gauge configurations in the quantum breakdown model.
Read full abstract