To decrease the substrate temperature gradient of a traditional single serpentine mini-channel heat sink, we present a novel double serpentine heat sink and perform experimental and numerical tests by employee ANSYS FLUENT (version 15) code to trade off the flow and thermal performance of the heat sink. The effects of three inlet-outlet arrangements, the through-hole numbers and the diameter of through-hole on the cooling capacity are compared and analyzed. It can be found that the introduction of interleaved inlet-outlet outperform provides much better uniform substrate temperature, meanwhile, the pressure drop can be reduced by up to 43%, and the average Nusselt number can be raised by up to 26% through punching holes on the channel wall at Qv = 0.159 L/min. It is also suggested that the double serpentine heat sink using more holes exhibits much better thermal performance attributed to the distinct alleviation of the maximum substrate temperature.