Microbial exopolymers are gaining attention as sources for the development of biodegradable materials. Milk kefir, a fermented dairy product produced by a symbiotic community of microorganisms, generates milk kefir grains as a by-product, consisting of the polysaccharide kefiran and proteins. This study develops two materials, one from whole milk kefir grains and another from purified kefiran. Film-forming dispersions were subjected to ultrasonic homogenisation and thermal treatment, yielding homogeneous dispersions. Kefiran dispersion exhibited lower pseudoplastic behaviour and higher viscous consistency, with minimal effects from glycerol. Both films exhibited continuous and homogeneous microstructures, with kefiran films being transparent and milk kefir films displaying a yellowish tint. Analysis revealed that milk kefir films comprised approximately 30% proteins and 70% kefiran. Kefiran films demonstrated stronger interpolymeric interactions, as evidenced using thermogravimetric and mechanical tests. Glycerol increased hydration while decreasing thermal stability, glass transition temperature, elastic modulus, and tensile strength in both films. However, in kefiran films, elongation at the break and water vapour permeability decreased at low glycerol content, followed by an increase at higher plasticiser contents. This suggests an unusual interaction between glycerol and kefiran in the absence of proteins. These findings underscore differences between materials derived from the whole by-product and purified kefiran, offering insights into their potential applications.
Read full abstract