Melatonin is an indolamine hormone presumably synthesized by retinal photoreceptors, and may act as a paracrine signal of darkness within the retina. Previous studies have suggested that melatonin, acting through specific receptors, may be involved in cyclic retinal functions such as photoreceptor outer segment disc shedding and phagocytosis, and modulation of neurotransmitter release in the inner retina. The goal of this study was to determine if melatonin receptor mRNA is expressed in the neural retina and retinal pigment epithelium (RPE) of Xenopus laevis. Sheets of RPE, devoid of contaminating cells, were obtained from Xenopus eyes, and epithelial cultures were subsequently established on microporous membrane filters in a defined medium. Total RNA was isolated from whole brain, neural retina, fresh RPE sheets, and cultured RPE cells. RNA expression of the three known Xenopus melatonin receptor subtypes (MEL1A, 1B, and 1C) was determined by reverse-transcription/polymerase chain reaction (RT/PCR) amplification, followed by Southern hybridization with RNA probes. PCR-amplified cDNA encoding melatonin receptor subtypes 1B and 1C, but not 1A, were detected in reverse-transcribed RNA obtained from brain, neural retina and RPE. RPE cells grown in culture for two weeks also demonstrated 1B and 1C receptor RNA expression. This study suggests that RNA encoding the 1B and 1C melatonin receptor subtypes is expressed in the neural retina and RPE of Xenopus retina, and the expression persists in RPE cells when grown in culture. The expression of melatonin receptor RNA in the RPE may reflect a regulatory role for melatonin in some diurnal events that occur in this tissue, such as phagocytosis of photoreceptor outer segment membranes, and intracellular migration of pigment granules.
Read full abstract