Epilepsy and migraine without aura (MWoA) are often comorbid, but the exact mechanisms are unclear. Magnetic resonance spectroscopy (1H-MRS) may help to understand the neurometabolic mechanisms in patients with epilepsy comorbid with MWoA (EWM). In this prospective cross-sectional study, we recruited 64 female patients, including 24 with EWM, 20 with epilepsy, and 20 with MWoA, as well as 20 age-level-matched and educational-level-matched female healthy controls from our hospital between August 2021 and November 2022. A single-voxel point-resolved spectroscopy sequence was used to acquire spectra of the bilateral dorsolateral prefrontal cortices (DLPFCs). Metabolites were quantified by linear combination model software, and the values were corrected for the partial volume effect of cerebrospinal fluid. MRS data comparisons were performed with multivariate analyses of variance. Correlation analyses were calculated between metabolites and main clinical data. The results showed that N-acetyl aspartate (NAA) was asymmetrical between the bilateral DLPFCs. Both NAA and myoinositol were significantly reduced in EWM than in healthy controls. Choline-containing compounds (Cho) were higher in MWoA than in the other three groups. Correlation analyses revealed that NAA of the right DLPFC and Cho of the bilateral DLPFCs in EWM were negatively related to migraine frequency. In addition, glutamate and glutamine (Glu and Gln, Glx) of the right DLPFC in EWM were negatively correlated with migraine severity. Our findings suggested that comorbid epilepsy and MWoA in female patients can lead to a synergistic reduction of both NAA and myoinositol, reflecting more serious injuries of neurons and glial cells.
Read full abstract