Central command, a feedforward signal from higher brain centers, regulates the cardiovascular system in association with exercise. Previous evidence suggests that nucleus (or nuclei) around the midbrain may contribute to generating spontaneous motor activity and concomitant cardiovascular responses. To examine which area within the midbrain is important for the spontaneous and synchronized responses, 18 rats were decerebrated at three levels (pre-midbrain, rostroventral midbrain, and caudal midbrain levels) and paralyzed with a neuromuscular blocker. Individual brain sections showed decerebration rostral to the pre-collicular level in the pre-midbrain preparation and, additionally, removal of the periaqueductal gray in the rostroventral midbrain preparation, and decerebration around the midcollicular level in the caudal midbrain preparation. Spontaneous motor activity occurred at frequency of 69 ± 27 times/h and accompanied increases in heart rate (by 15 ± 4 beats/min) and mean arterial blood pressure (by 54 ± 4 mmHg) in the pre-midbrain preparation. Similar motor and cardiovascular responses took place in the rostroventral midbrain preparation, while such responses hardly occurred in the caudal midbrain preparation. We next examined whether injection of a GABAergic receptor agonist (muscimol) in the ventral tegmental area (VTA) inhibits the spontaneous motor and cardiovascular responses in 6 pre-midbrain preparations. The occurrence of spontaneous motor activity and concomitant cardiovascular responses was inhibited clearly (P < 0.05) by injection of muscimol, but not saline. It is concluded that the VTA plays a pivotal role in the spontaneous and synchronized activation of the motor and cardiovascular systems in decerebrate rats.
Read full abstract