Spectral peaks and notches in the head-related transfer function (HRTF) are considered pivotal for elevation perception in virtual auditory displays (VAD), especially during static binaural signal playback. However, studies on dynamic binaural signal playback in VAD have shown that the auditory system can still utilize dynamic cues for elevation localization, even when these high-frequency spectral components are missing, although this may compromise localization accuracy. This study investigated the effects of spectral peaks and notches in dynamic playback, examining how distorting these features and their contrasts at various levels (33%, 66%, and 100% removal) influenced elevation localization along different rotational axes (yaw and pitch rotation). The results revealed that at the same distortion level, the impact of these features on median plane localization decreased sequentially from spectral contrast, to peaks, to notches. At a distortion level of 33%, notch removal enabled dynamic playback results that were not significantly different from control conditions. As distortion levels increased to 66% and 100%, localization performance progressively deteriorated, including increased localization errors and up-down confusion with head yaw rotation as well as front-back and up-down confusion with head pitch rotation. Simultaneously, localization performance with head pitch rotation exhibited poorer performance compared to yaw rotation, particularly in cases involving peak removal and contrast compression. The experimental results further revealed that auditory elevation localization benefits from multiple localization cues generated by head movements, including dynamic spectral cues produced during large head rotations when all spectral cues are available or distorted at a level of 33%.
Read full abstract