The eastward expansion of the Tibetan Plateau has resulted in different earthquake types in the eastern Tibetan Plateau, but the mechanism remains unclear. Here, we construct a three-dimensional visco-elastoplastic finite element model considering the topography to investigate the influence of fault geometry and rheological heterogeneity on stress fields. In our best-fitting model, the minimum principal stress is nearly vertical around the southern Huya fault zone, which is adjacent to the Longmen Shan fault zone, due to the significant mid-lower crust lateral rheological heterogeneity, and the thrust stress regime accounts for the reverse fault and thrust-dominated earthquakes. In this scenario, the eastward horizontal motion of the mid-lower crust is obstructed and facilitates thrust faulting, suggesting the limited eastward expansion of the Tibetan Plateau. In contrast, the northern Huya fault zone, one of the terminal branches of the East Kunlun fault, accommodates the continuous eastward extrusion of the East Kunlun fault, where the stress regime under a more homogenized crust favors the strike-slip faulting process, along with the dominant strike-slip earthquakes. Moreover, the best-fitting of stress regime explains the thrust-dominated 2008 Ms. 8.0 Wenchuan and 2013 Ms. 7.0 Lushan earthquakes on the Longmen Shan fault zone. Combining geophysical and geodetic observations and model analyses, we propose that the hybrid deformation mode in the eastern Tibetan Plateau is accommodated by upper crustal shear and thrusting deformation and mid-lower crustal thickening driven by the gravitational potential energy gradient. Our results elucidate the mechanism for differences in strong historical earthquakes and, more importantly, isolate the effect of fault geometry from those of heterogeneous viscosity on crustal deformation and stress heterogeneity in the eastern Tibetan Plateau.