Photocatalytic degradation by the titanium dioxide (TiO2) photocatalyst attracts tremendous interest due to its promising strategy to eliminate pollutants from wastewater. The floating photocatalysts are explored as potential candidates for practical wastewater treatment applications that could overcome the drawbacks posed by the suspended TiO2 photocatalysis system. The problem occurs when the powdered TiO2 applied directly into the treated solution will form a slurry, making its reuse become a difficult step after treatment. In this study, the immobilization of titanium dioxide nanoparticles (TiO2 NPs) on the floating substrate (cork) employing polyvinyl alcohol (PVA) as a binder to anchor TiO2 NPs on the surface of the cork was carried out. Characterizations such as Fourier transformer infrared, X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–vis), zeta potential, photoluminescence spectroscopy, femtosecond to millisecond time-resolved visible to mid-IR absorption spectroscopy, ion chromatography, and scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDX) analyses were employed. XRD analysis revealed the formation of anatase-phase TiO2 NPs. The results demonstrated that the crystallite size was 9.36 nm. The band gap energy of TiO2 NPs was determined as 3.0 eV. PL analysis verified that TiO2 NPs possessed a slower recombination rate of electron–hole pairs as compared to anatase TiO2. The result was attributed by the behavior of photogenerated charge carriers on TiO2 NPs, which existed as shallowly trapped electrons that could survive longer than a few milliseconds in this study. Furthermore, SEM–EDX analysis indicated that TiO2 NPs were well distributed on the surface of the cork. At the optimal mole ratio of TiO2/PVA (1:8), the TiO2/PVA/cork floating photocatalyst degraded at 98.43% of methylene blue (MB) under a visible light source which performed better than under sunlight irradiation (77.09% of MB removal) for 120 min. Besides, the mineralization result has measured the presence of sulfate anions after photocatalytic activities, which achieved 86.13% (under a visible light source) and 65.34% (under sunlight). The superior photodegradation performance for MB was mainly controlled by the reactive oxygen species of the superoxide radical (•O2–). The degradation kinetics of MB followed the first-order kinetics. Meanwhile, the Langmuir isotherm model was fitted for the adsorption isotherm. The floating photocatalyst presented good reusability, resulting in 78.13% of MB removal efficiency even after five cycles. Our TiO2/PVA/cork floating photocatalyst fabrication and high photocatalytic performance are potentially used in wastewater treatment, especially under visible light irradiation.
Read full abstract