The passive multipliers based on semiconductor diodes, most frequently a Schottky type, should be driven by a certain value of input power, where the conversion losses are optimal. This means that the variation in the input power level causes the change in the output power level. A solution to this issue is the integration of an output power amplifier, which in the state of saturation provides quasi-stabilization of the output power. Practically, this approach gives an unsatisfactory performance: weak stabilization or narrow input power range. This paper comprises a concept of an active frequency multiplier with the use of one FET transistor and a special adaptive bias circuit in order to obtain a very wide input power range when the output power is stable. The principle of the operation, design guidelines, and measurement results have been presented for an example circuit of the frequency doubler. The results show the possibility to obtain up to 10 dB input power range for a 1 dB change in output power level without the use of additional amplifiers.
Read full abstract